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Structuring chaotic fluidized beds
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Abstract

Three new ways are proposed to “structure” bubbling gas–solid fluidized beds, i.e. to bring order into their chaotic hydrodynamics.
Just like for fixed bed reactors, the rational structuring of fluidized beds, a novel concept, is interesting from the point of view of process
intensification, to facilitate scale-up and control, and to improve performance. Applying an AC electric field, reduces the average bubble
size by manipulating interparticle forces. Introducing part of the gas via a fractal injector, immersed into the bed, homogenizes the bed
contents, considerably improves gas–solid contact, and simplifies scale-up. Oscillating the gas flow transforms chaotic bubble motion into
remarkably regularly ordered patterns of rising bubbles.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Pioneering research by van den Bleek at Delft has been
instrumental in building a different and particularly useful
perspective on gas–solid fluidization. Fluidization is the
basis for scores of applications in which fast heat and mass
transfer between gas and solids as well as fast cooling or
heating the gas–solid mixture is essential. Therefore, im-
proved understanding and accurate modeling are important,
yet gas–solid fluidization remains a notoriously difficult to
quantify phenomenon. Consider a bubbling fluidized bed.
In such a system, gas is typically distributed via a bottom
distributor plate into a vessel filled with solid particles with
which the gas interacts: the gas could dry the particles, con-
tain reagents to coat them, react with them or be involved in
reactions catalyzed by the particles. Above a certain veloc-
ity, the solid particles are fluidized. The gas–solid suspen-
sion becomes unstable at this same velocity (the so-called
minimum fluidization velocity,Umf), or at a slightly higher
velocity, so that bubbles appear (past the minimum bub-
bling velocity). These bubbles grow while rising through
the vessel, possibly coalescing and perhaps breaking up
again. Their motion is irregular. Also the solids circulate
in complex scale-dependent patterns. Therefore, the hydro-
dynamics of bubbles and of the surrounding suspension or
emulsion phase in such a gas–solid fluidized bed are very
complex. Interestingly, however, the dynamics are not just
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complicated: van den Bleek and Schouten[1] and Daw
et al. [2] have shown that fluidized beds can be regarded
as chaotic systems, in the mathematical sense of the word.
The chaos approach towards fluidized beds allows replacing
purely empirical descriptions by models that account for a
more fundamental quantitative characterization of the dy-
namic behavior such as the chaotic attractor of the system
or the Kolmogorov entropy, and their dependence on the
gas–solid properties. A recent review paper[3] summarizes
the results based on this chaos theoretical approach, varying
from scaling up fluidized beds to monitoring hydrodynamic
changes and controlling fluid bed dynamics, hereby control-
ling fluidized bed processes. In other words, the discovery
that a fluidized bed is chaotic is of more than scientific
interest, and is more useful in engineering applications.

Also computational fluid dynamics simulations on faster
and faster computers provide new insight into fluidization.
Such improved understanding and models of fluidization
may help to take a next step, which is of fundamentally
different reactor design and operation, based onrational
as opposed toempirical methods. Many ways to improve
the fluidization behavior for particular applications have al-
ready been proposed and several are applied on an industrial
scale, but most of these are empirical or do insufficiently
rely on fundamental insights. Examples are the use of baf-
fles, changes in gas distributor design, application of mag-
netic or electric fields, the use of sound waves, pulsating
the gas flow, and vibrating the bed or the distributor. Most
of this work is purely empirical in nature. By changing the
fluidization behavior in a more rational way, based at least
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Nomenclature

D fractal dimension of a tree
DB bubble size (m)
f oscillation frequency (Hz)
m number of segments
n fractal generation number
Qa oscillation amplitude (m3/s)
Qmf minimum fluidization flow rate (m3/s)
Qp primary flow rate (m3/s)
Qs secondary flow rate (m3/s)
t time (s)
Umf minimum fluidization velocity (m/s)
Up primary gas velocity (m/s)

Greek letters
δ inner cutoff (m)
∆ diameter exponent of a tree

partially on new fundamental insights, the hydrodynamics
could be changed in a significant and controlled way, so as
to have a better control over the system, and improve mass
and heat transfer.

The aim of our most recent research at Delft, inspired by
the work of van den Bleek, is ab initio control via a rational
design and operation of fluidized beds. This is reminiscent of
ongoing work in our department in fixed bed reactor design:
ab initio control and higher efficiencies can be achieved by
replacing random catalyst packings by structured packings,
such as monoliths or regular packings of individual catalyst
particles[4,5]. We will show how, in fluidization technology,
novel reactor designs, gas distributor designs and controlling
the gas inlet dynamics may similarly enable us to “structure”
fluidized beds. Three examples are discussed: manipulation
of interparticle forces via AC electric fields, fractal injection
of gas into the system, and pulsation of the gas flow.

2. AC electric fields: bubble size reduction

The application of an alternating AC electric field is one
of the methods we investigate for controlling the bubble size
in a fluidized bed. We will give a short overview here. This
work is more extensively described by Kleijn van Willigen
et al.[6,7]. In fluidized beds, the forces on the particle scale
are extremely important for the hydrodynamic behavior on
the meso-scale. By applying an AC electric field to a flu-
idized bed of semi-insulating particles, we obtain additional
possibilities to control the interparticle forces and thus the
hydrodynamic behavior. By definition, a state of fluidiza-
tion exists when the force of gravity on the particles is bal-
anced by the drag arising from the flow of the fluidizing gas.
Consequently, small interparticle forces (e.g. Van der Waals
forces), which may not be noticeable in other circumstances,

Electric
Field

Fig. 1. Electric forces between particles polarized in an electric field
(adapted from[11]).

may have observable consequences when the particles are
fluidized [8–10].

In the presence of an electric field, semi-insulating parti-
cles (e.g. glass beads) become polarized, leading to an at-
tractive or repulsive interparticle force, depending on their
relative orientation in the electric field (Fig. 1). The max-
imum strength of this interparticle force is comparable in
magnitude to the drag and gravity forces exerted on fluidized
glass beads with a diameter of about 80�m. For larger par-
ticles, the polarization forces become (much) smaller than
drag and gravity, but can still play a significant role. For an
AC electric field, the particles will periodically experience
a cohesive force in the direction of the field. For the right
values of field strength and frequency, the cohesive force in
the field direction can lead to the temporary formation of
loose particle strings. These strings may hinder the forma-
tion, movement, and/or coalescence of the bubbles.

In the earliest work on electric fields in fluidized
beds, researchers focused mainly on what was called the
“stabilization” of a fluidized bed: constant (DC) electric
fields were applied that completely “froze” the fluidized bed,
e.g. [12,13]. Later on, the focus shifted more towards AC
electric fields. Here, the forces between the particles vary
in time, maintaining fluidization of the bed, e.g.[14,15].
Nevertheless, the effect on the bed was mainly evaluated
by bed expansion and visual observations. Currently, we
are applying more advanced measurement and analysis
techniques (video image analysis and pressure fluctuation
analysis) to obtain detailed information about the bubble
characteristics. This additional information will make it
easier to optimize the electrical field configuration and will
eventually lead to a more complete picture of the relation
between micro-scale polarization forces and the meso-scale
changes in the bubble characteristics.

2.1. Freely bubbling experiments

The effect of an electric field on a fluidized bed will
be illustrated by experiments carried out in a pseudo-
two-dimensional (2D) fluidized bed set-up with an internal
cross section of 20 cm× 1.5 cm. The electrodes consist of a
regular wire pattern strung through the column front and rear,
passing through the bed. The porous sintered steel sieve plate
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Fig. 2. Side view of the electrode configuration in the pseudo-2D col-
umn. Open circles represent live electrodes, while filled circles represent
grounded electrodes.

is grounded, and therefore serves as one of the electrodes.
The NiCr wire electrodes (diameter 250�m) are alternately,
both horizontally and vertically, grounded or connected to
a Trek 20/20c high-voltage power amplifier (Fig. 2). The
electrodes thus create a quadruple field with horizontal and
vertical components. A more detailed description of the
set-up can be found in Kleijn van Willigen et al.[6].

At a height of 1, 10, 19, and 30 cm above the support plate,
pressure fluctuations were measured at the wall using Kistler

Fig. 3. Bubble size reduction calculated from pressure fluctuations measured at 190 mm above the distributor plate as a function of frequency and applied
field. The grayscale displays the reduction as a fraction of the mean bubble diameter for the situation without imposing a field. Bed material: (a) 77�m
glass beads; (b) 700�m glass beads.

piezo-electric pressure transducers, type 7261. These pres-
sure transducers measure the pressure fluctuation relative to
the average pressure. The pressure fluctuation time-series
measured at different heights in the column were analyzed to
determine changes in the average bubble size with changing
electric properties. Van der Schaaf et al.[16] proposed a way
to decompose the power spectral density of pressure fluctu-
ations into a part generated by global phenomena and a part
generated by bubble passage. From the latter part, a charac-
teristic length scale of the bubbles can be calculated. This
method was used in the present experiments to determine
the effect of an electric field for a range of frequencies and
field strengths. The change in bubble size was always deter-
mined relative to the bubble sizes without an electric field.

We will show the results for freely bubbling bed experi-
ments for two types of particles. The bubble size reduction as
a function of field strength and frequency is given inFig. 3,
which shows the effect of the electric fields on 77�m glass
beads (Geldart A particles), fluidized with dry air at a superfi-
cial velocity of 0.03 m/s (∼3Umf). The settled bed height was
0.30 m. It was visually observed that the particles kept mov-
ing, and under no condition the bed was frozen. Bed expan-
sion during fluidization with and without electric fields was
visually observed to be very similar, but the pressure fluctu-
ation analysis shows that the bubble diameter changes sig-
nificantly. The measured reduction in bubble diameter at the
measuring height shown is about 25%, which corresponds to
a decrease in bubble volume (assuming spherical bubbles) of
approximately 60%. A comparable reduction in bubble size
has been obtained in a fully three-dimensional (3D) fluidized
bed[6]. Fig. 3a shows that for frequencies from 5 to 20 Hz,
the effect of the electric field is largest. This is in reasonably
good agreement with particle time constants given by Colver
[15].

Fig. 3b shows the results for similar experiments with
larger glass beads (700�m diameter, Geldart B) fluidized
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at 0.50 m/s (∼1.5Umf). The results show a much larger
decrease in mean bubble diameters than for the smaller
particles—a drop of up to 85% as compared to the situation
without electric fields. A dependence on frequency and volt-
age is again evident. It seems this region extends beyond the
ranges used in these experiments. The effect of the electric
fields is most pronounced at somewhat higher frequencies
than for the smaller Geldart A particles. We do not have an
explanation yet for this counterintuitive result. In contrast
to the Geldart A experiments, there is clearly a minimum
field strength required for the Geldart B particles to expe-
rience changes in bubble size. This is reasonable, since the
drag and gravity force are a factor 1000 larger than for the
Geldart A particles.

2.2. Bubble injection experiments

More detailed information about bubble size, bubble
shape, and the number of bubbles is obtained from video
analysis of bubble injection experiments. The column with
its electrode wiring is the same as above, except that a 10 cm
extension piece was placed between support plate and the
first electrodes to allow the formation of bubbles without
the influence of the electric fields. A bed of 520�m glass
bead particles was fluidized with dry air at 0.28 m/s, just
above the minimum fluidization velocity (0.24 m/s). The
settled bed height was 0.44 m. Two weight percent of fines
were added to the bed material to smoothen fluidization. A
gas pulse of 90 cm3 was injected through the center of the
bottom plate into the bed, forming one or more bubbles. The
experiments are repeated about 60 times to obtain reliable
statistics. Images were captured on a digital video camera
at a frame rate of 25 frames/s. The system was illuminated
from behind.

The video analysis showed that the bubbles injected at
the bottom plate are broken up when they move into the
electrode region.Fig. 4 gives the probability density func-
tions for the bubble diameter and the number of bubbles
per video frame as obtained from the image analysis. The
data are shown for the top 5 cm of the electrode region for
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Fig. 4. (a) Diameter of the bubbles and (b) number of bubbles in the top 5 cm of the electrode region as obtained from video recordings of the bubble
injection experiments.

a no-field situation, a 2 Hz, and a 10 Hz field of 5 kV/cm.
Fig. 4a shows a large decrease in bubble diameter under
the influence of the electric fields in the electrode region,
which is in agreement with the results for the freely bub-
bling bed.Fig. 4b shows that the average number of bub-
bles per video frame increases by imposing an electric field.
However, the increase in bubble number does not compen-
sate for the decrease in bubble size: the total visual bubble
volume decreases strongly (∼50%) under the presence of
an electric field. This suggests that part of the gas is moved
to the emulsion phase. Both bubble size reduction and an
increased amount of emulsion phase gas will increase the
gas-to-solid mass transfer.

3. Fractal injector: suppressing bubbles

Gas is traditionally introduced via a bottom distributor
plate. However, as long as the reactor contents remain flu-
idized, part of the gas could be introduced at different loca-
tions in the bed, and not only from below. Such secondary
gas injection lends additional flexibility to fluidized bed op-
eration, and these additional degrees of freedom can obvi-
ously be used to improve the reactor performance. When, on
top of this, the device used to inject the gas is given a fractal
design (Fig. 5), scale-up of the controlled hydrodynamics is
facilitated[17–19].

The amount of gas introduced via the bottom distributor
plate is called the “primary” flow (Qp), while the gas intro-
duced via a fluid injector to different locations inside the
bed is called the “secondary” flow (Qs). By maintaining the
primary gas flowQp aboveQmf (Up ≥ Umf), the gas–solid
mixture remains fluidized. If the total gas flow rateQ0 to
be introduced in the bed is much larger than the minimum
fluidization velocity (for simplicity, here we only consider
Geldart B powders, withQb = Qmf), large bubbles would
be formed if all the gas were to be introduced as primary
gas. For processes limited by the transport of active com-
ponents between gas and solid particles, this is disadvanta-
geous. By spreading out part of the gas,Qs, over several
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Fig. 5. Example of self-similar fractal injectors with a fractal dimensionD = log 6/log 2 ≈ 2.58. The left one could be used in a large reactor vessel,
scaled up from the smaller vessel in which the right one would be used. These tree-like injectors only differ in their number of branching levels or
generations,n. Fluid enters the stem, and exits the multitude of smallest twigs. Equal path lengths from stem to twigs help to uniformize the exiting
fluid, whatever the size of the vessel.

locations higher up in the bed, while the primary flowQp
is only slightly aboveQmf , a number of desirable features
may be attained.

First, fresh gas is fed to regions where rising gas is (par-
tially) depleted from active components. Multiple gas injec-
tion points along the vertical direction will lead to behavior
closer to plug flow, and a virtual division of the fluidized
bed into different well-mixed regions or cells, which are in
direct contact with each other.

Second, incoming fresh gas, flowing into the reactor
through the injector outlets, mixes with the already present
gas–solid suspension, leading to enhanced local mixing
within the virtual cells. By injecting gas at different loca-
tions at the same bed height, possible radial inhomogeneities
are diminished or eliminated as well.

Third, bubble formation may be suppressed, as illustrated
in Fig. 6. Bubbles only gradually grow while gas rises
through a fluidized bed. A fluidized bed is a dynamic sys-
tem, and it takes time for an unstable gas–solid mixture to
separate into gas bubbles and a gas–solid suspension with a
void fraction close to that at minimum fluidization, i.e. the
thermodynamic equilibrium. Therefore, in a conventional,
deep bubbling fluidized beds with only primary flow, this
(thermo)dynamic equilibrium is only reached higher up in
the bed. When secondary gas is injected at different heights,
before the equilibrium is reached, a suspension with a gas
fraction higher than the equilibrium fraction may be dynami-
cally sustained. Freshly injected gas at different vertical
locations disperses particles and breaks up bubbles, so that

a metastable suspension with high gas content is formed.
The improved gas–solid contact as a result of the just dis-
cussed process, amply compensates for the small reduction
in average residence time, for transport-limited processes.

Secondary gas injection can be taken optimally advantage
of by introducing the gas at optimized locations through-
out the bed. These locations will depend on the process at
hand, but giving the injector itself a fractal shape facili-
tates scale-up and homogenization. Tree-like fractal injec-
tors, such as the ones shown inFigs. 5 and 6, allow to inject
the gas flow via a single stem, and subdivide it in equal parts
by repeated branching, in such a way that the distance from
the stem to each of the outlets is equal. Equal pressure drops
and equal exit flows may hence be realized. Furthermore,
fractals are intrinsically scalable, as exemplified by (real)
natural trees. A fractal design makes it easier to maintain the
uniformity even while scaling up a reactor, hereby avoid-
ing scale-dependent hydrodynamics. An additional bonus is
that the injector tubes themselves may function as a static
mixer. This was noticed when operating a scaled-up version
of the injector shown inFig. 6, twice as high and twice as
wide, with 64 outlets (instead of 16) in a 40 cm bed (instead
of a 20 cm one), atU = 6Umf : even without injecting gas
through the injector, its presence alone already reduced bub-
ble size. The bubble size was further reduced when part of
the gas was led through the injector.

Fractal trees are characterized by several parameters, like
their fractal dimension,D, their diameter exponent,∆, and
the number of branching levels,n [20]. Both the length and
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Fig. 6. Illustration of the decrease in average bubble size,DB, calculated
from the analysis of video images of air-fluidized 2D beds of 200�m
sand particles, when a fractal gas injector, as shown in (a), is used. A part
Qs of the total flowQ0 is distributed via a 2D fractal injector, while the
rest,Qp, is injected through the porous bottom plate. In these experiments,
the (pseudo) 2D bed was 20 cm wide, 20 cm deep, and 1.5 cm thick.

the diameter of the injector tubes decrease as power laws,
characterized byD and∆, respectively. It is clear that thicker
tubes take more space, but that they also reduce the pres-
sure drop over the device, so there will be an optimum for
∆. The optimization of the fractal dimensionD is an inde-
pendent matter, yet a non-trivial one. We can only briefly
touch upon the subject here, but it can be shown easily that
D will in general be less than 3 and more than 2. On the
one hand, the injected fluid ought to reach the complete re-
actor volume, but on the other hand, it is not desirable to
have a space-filling device (D = 3 for a 3D bed orD = 2
for a pseudo-2D one), which is complicated, occupies much
space, and more, importantly, performs sub-optimally. The
latter is a result of the dynamic behavior of the system and
the intrinsic anisotropy. If the reactor contents were static, a
uniform and as dense as possible distribution of secondary
injection points would lead to uniform reaction conditions.
However, both primary and secondary gas rise through the
bed, which means that, in general, it is better to distribute the
injection points in a non-uniform way in the axial direction.
The distribution depends on the kinetics of the fluidized bed
process, and the mass transfer limitations (which we try to
eliminate). Furthermore, out flowing secondary gas mixes

with the local contents in the reactor. The distance between
outlets, horizontally and vertically, can be optimized based
on the local mixing properties. Note that this optimization
could be performed based on single outlet studies, as a re-
sult of the fractal scaling properties of the injector, and the
localization of the mixing. Local mixing can and should be
taken advantage of: a higher density of outlets is not better.
The outlet design could be independently optimized to im-
prove local mixing. Finally, it is interesting to think about
fractal “trees” in nature, like botanical trees, lungs, kidneys,
or the vascular network, which are all fractal yet have differ-
ent geometries depending on their function. Also in nature,
the chosen and perhaps also optimal parameters (in partic-
ular, D and ∆) take on different values depending on the
function of the tree.

An often forgotten concept from fractal geometry, in-
troduced by Mandelbrot[20], is lacunarity. The lacunarity
describes how close (low lacunarity) or how far (high lacu-
narity) a fractal is removed from homogeneity. As discussed
by Coppens[21], lacunarity should play a crucial role in
optimizing the structure of the fractal injector as the fractal
dimension alone is clearly insufficient to characterize even
the simplest fractal (Fig. 7). In particular, by tuning the la-
cunarity it is possible to realize homogeneity, even at fractal
dimensionsD inferior to those of the embedding space, i.e.
D < 3 for a 3D fluidized bed. In other words, the lengths of
the tubes and the number of outlets scale with reactor size
as a power law withD < 3, to maintain the desired prop-
erties in each outlet “cell”, yet the distance between these
outlets is controlled independently to maintain a desired
uniform or non-uniform distribution—the non-uniformity
to compensate for reactor anisotropy. Future work will ex-
plore the optimization of the fractal injector, and its use in
chemical processes, in more detail.

(c)(a) (b)

n = 0 
n = 2 
n = 3 

n = 0 
n = 1 

Average lacunarity    Lowest lacunarity    Highest lacunarity

Fig. 7. Fractal lacunarity measures deviations from translational homo-
geneity. All shown (pre-)fractal (Cantor) sets share the same Hausdorff
(fractal) dimension:D = log 2/log 4 = 1/2, since the number of seg-
ments,m, scales with the fractal generation,n, asm ∼ 2n, while the size
of the inner cutoff,δ, scales asδ ∼ 4−n, andD = −logm/logδ. Never-
theless, the distribution of the voids, a measure for lacunarity, differs in
each case. In (a) the voids are distributed in a non-uniform way and have
a size distribution that is a power law characterized byD (the conven-
tional, self-similar Cantor set). The voids in (b) are distributed uniformly
and have a sizeδ ∼ 4−n each. The voids in (c), finally, all shrunk to
zero except for one void of size 1–2−n that in the limit covers the entire
length (extreme non-uniformity).
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Fig. 8. Dynamic, ordered bubble patterns form in a deep, yet thin (“2D”) air-fluidized bed of sand particles (43 cm high× 40 cm wide), when the airflow
is oscillated at a frequencyf = 3.5 Hz, andQp = Qmf ; Qa = 0.5Qmf . The sequence shows four snapshots out of one period of the bubble pattern
(frequency 3.5/2 = 1.75 Hz), as seen through the front of the bed[26].

4. Pulsating fluidized beds: ordering the chaos

A third way to modify the fluidized bed hydrodynamics in
a considerable way, without changing the average gas flow,
is to oscillate the gas flow around the average instead of
keeping it constant. Work by Massimilla et al.[22] had in-
dicated that oscillating the gas flow could notably improve
the efficiency of fluidized bed combustion. Wong and Baird
[23] and Köksal and Vural[24] showed that periodic pul-
sation of the gas flow would influence the bubble size and
could be used to improve fluidized bed performance. Fur-
thermore, it is known that chaotic dynamics can be locked
into a periodic orbit by fluctuating certain parameters that
influence the dynamics—chaos control[3], and Pence and
Beasley[25] showed that pulsed fluidization could indeed
suppress chaotic behavior.

All this inspired us to oscillate the gas flow in a (pseudo)
2D fluidized bed, one with similar characteristics as the one
used in experiments with the fractal injector. This time, all
gas was injected through the porous distributor plate, but a
sinusoidally oscillating gas flow,Qa[1 + sin(2πft)], was su-
perimposed onto a constant primary gas flow,Qp > Qmf , so
that the total gas flowQ0 = Qp + Qa[1 + sin(2πft)] would
always be above minimum fluidization. For a broad range
of frequenciesf (on the order of a few Hertz: 2.5–7 Hz) and
amplitudes(Qa/Qmf = 0.2–0.7), very regular bubble pat-
terns would appear. Bubbles would rise in staggered, reg-
ularly ordered rows (Fig. 8) [26]. Knowing that “bubbles”
are actually dynamic voids[27], which are far from being
perfectly smooth entities, this is even more remarkable. At
a certain bed height, the order is destroyed, and the bubble
patterns again turn chaotic. Interestingly, the pattern forma-
tion and the inter-bubble distance in the pattern are indepen-
dent of bed width, as long as gas is introduced in a uniform
way through the porous bottom distributor plate. Uniformly
injected gas very quickly rearranges itself to form a regu-
lar row of bubbles, which rises vertically through the bed.
Near the maximum of every oscillation period, a new row
of bubbles is formed, staggered with respect to the previous
row. Instabilities, partially intrinsic, partially caused by the
walls, ultimately lead to disappearance of the order higher
up in the bed. Since wall effects are smaller when the bed

is wider, the patterns survive up to a height that seems to be
almost equal to the width, at least in the experiments with
air and sand performed up to now. The waves are no sim-
ple linear resonance phenomenon. The pattern wavelength
is not inversely proportional to the driving frequency, while
the pattern is formed in a range of frequencies and not at
specific frequencies.

Many perturbed, non-linear dissipative systems driven
outside of equilibrium are known to generate regular pat-
terns [28]. Fluctuations may lead to self-assembly and
pattern formation[29]. At the same time, patterns are a sig-
nature of the system properties, so the formation of patterns
in fluidized beds may not only be a way to order them, but
at least as relevant is that patterns and their characteristics
reveal something about the underlying complex dynamics.

In cylindrical columns, filled with a shallow layer of sand
and fluidized by an oscillating airflow, regular patterns were
also discovered[27], very similar to the ones seen in vi-
brated granular layers[29,30]. Ordered patterns in 2D or
3D vibrated granular layers, however, are only formed when
the layers are very shallow, as a result of extensive dissi-
pation via interparticle collisions, while the experiments in
the (deep, vertical) pseudo-2D bed showed that patterns are
propagated by the gas flow up to considerable macroscopic
heights.

5. Conclusions

This paper introduced three possibilities to structure
chaotic fluidized beds, the aim of which is to increase
control over fluidized bed hydrodynamics by fundamental
changes in reactor operation and gas distributor design.

The AC electric fields give us the possibility to directly
manipulate the interparticle forces due to polarization ef-
fects. In this way, a considerable reduction in bubble size can
be achieved while maintaining fluidization, thus enhancing
the gas–solid contact, which is beneficial in transport-limited
fluidized bed processes.

Using secondary gas injection, bubble formation can also
be suppressed, and gas–solid suspensions with a high poros-
ity can be maintained. Giving the secondary gas injector a
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fractal design, facilitates scale-up of fluidized beds, as a re-
sult of the intrinsic scaling property of fractals.

Oscillating the gas flow that is introduced at the bottom of
the fluidized bed may lead to the transformation of chaotic
to stable, remarkably regular bubble patterns, offering new
avenues for intrinsic control and scale-independent hydro-
dynamics.

Research on “structured” fluidized beds is at an early
stage. Concrete technological applications will be evaluated
in future work. On the fundamental scientific side, future
research on structured fluidized beds will increasingly rely
on the manipulation of interparticle forces and particle–fluid
interactions to achieve a desirable fluidization behavior for
a given application. The combination of microscopic and
mesoscopic modeling with careful experimentation is essen-
tial in obtaining more insight in fluidization and in control-
ling the chaos.

Acknowledgements

Current and former group members are thanked for their
contributions to this research, in particular: F. Kleijn van
Willigen, G.B. Schmit, S. Baltussen, Y. Cheng, S. Lems,
and M.A. Regelink. Professor J. van Turnhout is thanked for
fruitful discussions concerning the electric fields. The au-
thors would like to thank Professor Cor M. van den Bleek
for the many stimulating and inspiring discussions. One of
the authors (M.-O.C.) would like to thank the Dutch Foun-
dation for Scientific Research, NWO, for ongoing financial
support via an Open Competition grant, and a Jonge Chemici
(Young Chemist) and a PIONIER award.

References

[1] C.M. van den Bleek, J.C. Schouten, Deterministic chaos—a new
tool in fluidized-bed design and operation, Chem. Eng. J. 53 (1993)
75–87.

[2] C.S. Daw, W.F. Lawkins, D.J. Downing, N.E. Clapp, Chaotic
characteristics of a complex gas–solids flow, Phys. Rev. A 41 (1990)
1179–1181.

[3] C.M. van den Bleek, M.-O. Coppens, J.C. Schouten, Application of
chaos analysis to multiphase reactors, Chem. Eng. Sci. 57 (2002)
4763–4778.

[4] H.P.A. Calis, J. Nijenhuis, B.C. Paikert, F.M. Dautzenberg, C.M. van
den Bleek, CFD modelling and experimental validation of pressure
drop and flow profile in a novel structured catalytic reactor packing,
Chem. Eng. Sci. 56 (2001) 1713–1720.

[5] F. Kapteijn, T.A. Nijhuis, J.J. Heiszwolf, J.A. Moulijn, New
non-traditional multiphase catalytic reactors based on monolithic
structures, Catal Today 66 (2001) 133–144.

[6] F. Kleijn van Willigen, J.R. van Ommen, J. van Turnhout, C.M.
van den Bleek, Bubble size reduction in a fluidized bed by electric
fields, Int. J. Chem. React. Eng. 1 (2003) (paper A21).http://www.
bepress.com/ijcre/vol1/A21.

[7] F. Kleijn van Willigen, J.R. van Ommen, J. van Turnhout, C.M.
van den Bleek, The influence of AC electric fields on bubbles in

gas–solids fluidized beds, in: Proceedings of the 11th International
Conference on Fluidization, submitted for publication.

[8] K. Rietema, The Dynamics of Fine Powders, Elsevier, Dordrecht,
1991.

[9] J.P.K. Seville, C.D. Willett, P.C. Knight, Interparticle forces in
fluidisation: a review, Powder Technol. 113 (2000) 261–268.

[10] J.M. Valverde, M.A.S. Quintanilla, A. Castellanos, P. Mills,
Experimental study on the dynamics of gas-fluidized beds, Phys.
Rev. E 67 (2003) (article no. 016303).

[11] M. Parthasarathy, D.J. Klingenberg, Electrorheology: mechanisms
and models, Mater. Sci. Eng. R 17 (1996) 57–103.

[12] T.W. Johnson, J.R. Melcher, Electromechanics of electrofluidized
beds, Ind. Eng. Chem. Fundam. 14 (1975) 146–153.

[13] P.W. Dietz, J.R. Melcher, Interparticle electrical forces in packed and
fluidized beds, Ind. Eng. Chem. Fundam. 17 (1978) 28–32.

[14] M. Zahn, S.-W. Rhee, Electric field effects on the equilibrium and
small signal stabilization of electrofluidized beds, IEEE Trans. Ind.
Appl. IA-20 (1) (1984) 137–147.

[15] G.M. Colver, An interparticle force model for AC–DC electric fields
in powders, Powder Technol. 112 (2000) 126–136.

[16] J. Van der Schaaf, J.C. Schouten, F. Johnsson, C.M. van den
Bleek, Non-intrusive determination of bubble and slug length scales
in fluidized beds by decomposition of the power spectral density
of pressure time series, Int. J. Multiphase Flow 28 (2002) 865–
880.

[17] M.-O. Coppens, Geometrical control of multiphase processes using
a new fluid injection system, in: Proceedings of the AIChE Annual
Meeting, Dallas, TX, USA, 31 October–5 November, Paper 288c,
1999.

[18] M.-O. Coppens, Method for operating a chemical and/or physical
process by means of a hierarchical fluid injection system, US Patent
6,333,019 (2001).

[19] Y. Cheng, C.M. van den Bleek, M.-O. Coppens, Hydrodynamics of
gas–solid fluidized beds using a fractal injector, in: M. Kwauk, J. Li,
W.-C. Yang (Eds.), Proceedings of the 10th International Conference
on Fluidization, United Engineering Foundation, New York, 2001,
pp. 373–380.

[20] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San
Francisco, CA, 1983.

[21] M.-O. Coppens, Nature inspired chemical engineering—learning
from the fractal geometry of nature in sustainable chemical
engineering, Proc. Symp. Pure Math., in press.

[22] L. Massimilla, G. Volpicelli, G. Raso, A study on pulsating gas
fluidization of beds of particles, Chem. Eng. Prog. Symp. Ser. 62
(1966) 63–70.

[23] H.W. Wong, M.H.I. Baird, Fluidization in a pulsed gas flow, Chem.
Eng. J. 2 (1971) 104–113.

[24] M. Köksal, H. Vural, Bubble size control in a two-dimensional
fluidized bed using a moving double plate distributor, Powder
Technol. 95 (1998) 205–213.

[25] D.V. Pence, D.E. Beasley, Chaos suppression in gas–solid
fluidization, Chaos 8 (1998) 514–519.

[26] M.-O. Coppens, M.A. Regelink, C.M. van den Bleek, Pulsation
induced transition from chaos to periodically ordered patterns in
fluidised beds, in: Proceedings of the Fourth World Conference on
Particle Technology, Paper 355, 2002.

[27] J.G. Yates, D.J. Cheesham, Y.A. Sergeev, Experimental observations
of voidage distribution around bubbles in a fluidized bed, Chem.
Eng. Sci. 49 (1994) 1885–1895.

[28] M.C. Cross, P.C. Hohenberg, Pattern formation outside of
equilibrium, Rev. Mod. Phys. 65 (1993) 851–1112.

[29] T. Shinbrot, F.J. Muzzio, Noise to order, Nature 410 (2001) 251–258.
[30] T.H. Metcalf, J.B. Knight, H.M. Jaeger, Standing wave patterns in

shallow beds of vibrated granular material, Physica A 236 (1997)
202–210.

http://www.bepress.com/ijcre/vol1/A21
http://www.bepress.com/ijcre/vol1/A21

	Structuring chaotic fluidized beds
	Introduction
	AC electric fields: bubble size reduction
	Freely bubbling experiments
	Bubble injection experiments

	Fractal injector: suppressing bubbles
	Pulsating fluidized beds: ordering the chaos
	Conclusions
	Acknowledgements
	References


